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Abstract
The Hannay angle in an LCR circuit with time-dependent inductance,
capacitance and resistance is obtained. A simple scheme to measure this
angle is also proposed.

PACS numbers: 03.65.Vf, 84.30.Bv

Geometric phases and their physical effects have attracted considerable attention since Berry
discovered the quantum geometric phase (Berry phase) [1] and Hannay found its classical
correspondent (Hannay angle) [2]. The concept of geometric phase has penetrated many areas
of physics, with the theoretical investigations and experimental findings of Berry phases and
Hannay angles in many physical systems [3]. Here we show, based on the similarity between
mechanical and electromagnetic oscillations, that there exists a Hannay angle (classical
geometric phase) in an LCR circuit, a simple and well-known classical electromagnetic
oscillation system, when the inductance, capacity and resistance of the circuit change with
time periodically and adiabatically.

First, let us establish the differential equation for an LCR circuit with time-dependent
inductance, capacitance and resistance, denoted by L(t), C(t) and R(t), respectively.
Here we assume that L(t), C(t) and R(t) satisfy the condition 4LC > (CR)2. If
I (t) is the current at time t in the circuit, the potential difference of the resistor is
UR = I (t)R(t) and the magnetic flux through the inductor is � = L(t)I (t). According
to Faraday’s law, the induced emf of the inductor is given by εL = −d�/dt . If Q(t)

is the charge at time t on the capacity plate, the potential difference of the capacity is
UC = Q(t)/C(t). Since I (t) = dQ/dt , applying Kirchhoff’s law, one can get the differential
equation

d

dt

(
L(t)

dQ

dt

)
+ R(t)

dQ

dt
+

Q

C(t)
= 0. (1)

This equation can be recognized as the same differential equation for a time-dependent
damped harmonic oscillator by making use of the correspondence relationship between
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the physical quantities of mechanical oscillators and those of electric circuits, which is as
follows:

displacement x ⇔ electric charge Q

mass m ⇔ inductance L

damping coefficient µ ⇔ resistance R

spring coefficient k ⇔ inverse of capacitance 1/C.

With the help of this well-known relationship, one can find that the differential equation for
the corresponding mechanical oscillator is

d

dt

(
m(t)

dx

dt

)
+ µ(t)

dx

dt
+ k(t)x = 0. (2)

This is just Newton’s equation for a damped harmonic oscillator with time-dependent mass,
spring coefficient and damping coefficient.

In the Hamiltonian formulation of classical mechanics, the Hamiltonian for a time-
dependent damped harmonic oscillator is [4]

H = exp

(
−

∫ t

0

µ

m
dt

)
p2

2m
+ exp

(∫ t

0

µ

m
dt

)
kx2

2
. (3)

If we perform a canonical transformation given by

x ′ = x exp

(∫ t

0

µ

2m
dt

)
p′ = p exp

(
−

∫ t

0

µ

2m
dt

)
(4)

the new Hamiltonian turns out to be

H ′ = 1
2 [X(t)x ′2 + 2Y (t)p′x ′ + Z(t)p′2] (5)

where X(t) = k(t), Y (t) = µ(t)/2m(t), Z(t) = 1/m(t), satisfying the condition XZ −
Y 2 > 0. Hamiltonian (5) is just the Hamiltonian for a generalized time-dependent harmonic
oscillator that was studied by Berry in [5]. In this paper, Berry showed that if the parameters
X,Y,Z change with time periodically and adiabatically, there exists a classical geometric
phase (Hannay angle), besides a dynamical phase ϕD = ∫ T

0 ωD dt , in the total phase of the
x ′(t). The Hannay angle acquired in one period is

�θ =
∮

d �R · Z

2ωD

∇ �R

(
Y

Z

)
. (6)

Here ωD = √
XZ − Y 2; �R = (X, Y,Z) denotes the vector in parameter space. It is obvious

that the Hannay angle is only dependent on the path in parameter space.
Based on the similarity between mechanical and electromagnetic oscillations, we can

conclude that if the inductance, capacity and resistance of an LCR circuit change with
time periodically and adiabatically, there exists a Hannay angle, besides a dynamical phase
ϕD = ∫ T

0

√
1/LC − (R/2L)2 dt , in the total phase of Q(t). The Hannay angle acquired in

one period can be directly obtained as

�θ =
∮

d
⇀

S · 1

4
√

L/C − (R/2)2
∇�SR =

∮
dR

4
√

L/C − (R/2)2
. (7)

Here �S = (L,C,R), represents the vector in parameter space.
Since the realization of an LCR circuit with time-dependent parameters is easier than that

of the corresponding mechanical oscillator, one may naturally expect that the experimental
finding of the Hannay angle in the circuit should be easier. Now we turn to the issue of how
to measure this angle in the experiment.
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It is heuristic to study how dynamical phase and geometric phase change when we
perform a scale transformation on the inductance and capacity. One can observe that if a scale
transformation, given by L(t) → aL(t), C(t) → aC(t), is performed on the inductance and
capacity, the dynamical phase will transform as ϕD → ϕD/a, and the geometric phase will be
unchanged. This fact leads to a simple and straightforward way to measure the Hannay angle
in the circuit.

Consider two time-dependent LCR circuits, one with inductanceL(t), capacitance C(t)

and resistance R(t), and the other with 2L(t), 2C(t), R(t). Assuming that (1) the two circuits
begin to oscillate at the same time and with the same initial phases, and (2) the inductances,
capacities and resistances change periodically and adiabatically, one can find that after one
period the dynamical phase in the second circuit is half of that in the first and the Hannay
angles in both the circuits are the same. Let ϕ1 and ϕ2 denote the total phases of the charges
on the capacity plates in the first and second circuits, respectively. The foregoing analysis
suggests that if ϕ1 and ϕ2 are measured in the experiment, the Hannay angle in either circuit
is given by

�θ = 2ϕ2 − ϕ1. (8)

No matter how the adiabatic and periodic changes of inductances, capacitances and resistances
in the circuits are governed, if the paths in parameter space are the same, �θ will be unchanged,
since the Hannay angle is only dependent on the path in parameter space.

In conclusion, the Hannay angle in an LCR circuit with time-dependent inductance,
capacitance and resistance has been investigated in this letter. Based on the similarity between
the mechanical and electromagnetic oscillations, we have shown that there exists a Hannay
angle when the parameters of the circuit change with time periodically and adiabatically. A
simple scheme to measure this angle has also been proposed. As a final remark, we expect
experimental observations of the Hannay angle in the time-dependent LCR circuit.
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